In silico research of anti-CHIKF phytoconstituent-based from Physalis peruviana leaves via molecular docking and dynamics analyses

  • Putri Ayu Ika Setiyowati Universitas Muhammadiyah Lamongan
  • M. Ainul Mahbubillah Universitas Muhammadiyah Lamongan
  • Nur Sofiatul Aini Universitas Negeri Surabaya
  • Yuanita Rachmawati Universitas Islam Negeri Sunan Ampel
Keywords: 1,2-benzenecarboxylic acid, Physalis peruviana, Chikungunya, CHIKV, Antiviral


Chikungunya fever (CHIKF) is an infectious disease that has similar symptoms with dengue fever (DF). Several drugs have been offered to treat both dengue (DENV) and chikungunya virus (CHIKV). Investigating anti-CHIKF potential from nearby plants is one strategy to produce potential drug to reduce CHIKF in endemic countries. Physalis peruviana is one the promising object to be new anti-CHIKV drug candidate. This study aimed to analyze the anti-CHIKV agents from leaf parts of P. peruviana. Ligand and protein samples were collected from multiple sources. The phytoconstituents were evaluated their drug-likeness properties throughout SwissADME webservers. Selected ligands then docked via PyRX and measured the output by binding affinity. Visualization of the best outputs was carried out using BIOVIA Discovery Studio. CABS-flex was carried out to screen the RMSF of molecular dynamics activity of the best complex. The result showed that 1,2-benzenecarboxylic acid had the lowest binding affinity following suramin as control with -5.1 and -11.1 kcal/mol after targeting E2 domain protein of CHIKV. This led to the conclusion that 1,2-benzenecarboxylic acid could be forecast as predictive anti-CHIKF therapeutic candidate. Additional in vitro and in vivo studies are needed to validate this outcome.


Download data is not yet available.


A Suhrbier. Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat Rev Rheumatol. 2019;15:597–611. doi:

Kasabe B, Ahire G, Patil P, et al. Drug repurposing approach against chikungunya virus: an in vitro and in silico study. Front Cell Infect Microbiol. 2023;13:1132538. doi:10.3389/fcimb.2023.1132538

Silva J, Ludwig-Begall L, Oliveira-Filho E de, et al. A scoping review of chikungunya virus infection: epidemiology, clinical characteristics, viral co-circulation complications, and control. Acta Trop. 2018;188:213-224. doi:

Amaral J, Bingham C, Schoen R. Successful methotrexate treatment of chronic chikungunya arthritis. J Clin Rheumatol. 2020;26(3):119-124. doi:10.1097/RHU.0000000000000943

Benjamanukul S, Osiri M, Chansaenroj J, Chirathawon C, Poovorawan Y. Rheumatic manifestations of chikungunya virus infection: prevalence, patterns, and enthesitis. PLoS One. 2021;16:e0249867. doi:

Punekar M, Kasabe B, Patil P, et al. A Transcriptomics-based bioinformatics approach for identification and in vitro screening of FDA-approved drugs for repurposing against dengue virus-2. Viruses. 2022;14(10):2150. doi:

Kasali F, Tusiimire J, Kadima J, Tolo C, Weisheit A, Agaba A. Ethnotherapeutic uses and phytochemical composition of Physalis peruviana L.: an overview. Sci World J. 2021;2021:5212348. doi:10.1155/2021/5212348

Wanzala W, Takken W, Mukabana W, Pala A, Hassanali A. Ethnoknowledge of Bukusu community on livestock tick prevention and control in Bungoma District, Western Kenya. J Ethnopharmacol. 2012;140(2):298-324. doi:10.1016/j.jep.2012.01.021

Mukungu N, Abuga K, Okalebo F, Ingwela R, Mwangi J. Medicinal plants used for management of malaria among the Luhya community of Kakamega East Sub-County, Kenya. J Ethnopharmacol. 2016;194:98-107. doi:10.1016/j.jep.2016.08.050

Voss J, Vaney M-C, Duquerroy S, et al. Glycoprotein organization of chikungunya virus particles revealed by X-ray crystallography. Nature. 2010;468:709–712. doi:

Widyananda M, Wicaksono S, Rahmawati K, et al. A potential anticancer mechanism of finger root (Boesenbergia rotunda) extracts against a breast cancer cell line. Scientifica (Cairo). 2022;2022:9130252. doi:10.1155/2022/9130252

Tamam M, Aini N, Murtadlo A, Turista D, Naw S, Ullah M. Antiviral and anticancer activity from Curcuma longa L. and Tamarindus indica bioactive compounds through in silico analysis. SAINSTEK. 2023;2(1):12-17. doi:10.24036/sainstek/vol2-iss01/21

Turista D, Aini N, Murtadlo A, Tamam M, Naw S, Ullah M. Virtual screening of alternative antiretroviral through integrase inhibitor from Curcuma longa L. and Tamarindus indica compounds against HIV-1 infection. SAINSTEK. 2023;2(1):24-29. doi:10.24036/sainstek/vol2-iss01/20

Nafisah W, Fatchiyah, Widyananda M, et al. Potential of bioactive compound of Cyperus rotundus L. rhizome extract as inhibitor if PD-L1/PD-1 interaction: an in silico study. Agric Nat Resour. 2022;56(751-760). doi:10.34044/j.anres.2022.56.4.09

Huang L, Zhu X, Zhou S, et al. Phthalic acid esters: natural sources and biological activities. Toxins (Basel). 2021;13:495. doi:10.3390/toxins13070495

Duan Y, Chen R, Zhang R, et al. Isolation, identification, and antibacterial mechanisms of Bacillus amyloliquefaciens QSB-6 and its effect on plant roots. Front Microbiol. 2021;12:746799. doi:10.3389/fmicb.2021.746799

Khalid A, Algarni A, Homeida H, et al. Phytochemical, cytotoxic, and antimicrobial evaluation of Tribulus terrestris L., Typha domingensis Pers., and Ricinus communis L.: scientific evidences for folkloric uses. Evid Based Complement Altern Med. 2022;2022:6519712. doi:10.1155/2022/6519712

Schwartz O, Albert M. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol. 2010;8(7):491-500. doi:10.1038/nrmicro2368

Roach P, Farrar D, CC Perry. Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc. 2005;127(22):8168-8173. doi:10.1021/ja042898o

Detmar E, Müller V, Zell D, Ackerman L, Breugst M. Cobalt-catalyzed C-H cyanations: insights into the reaction mechanism and the role of London dispersion. Beilstein J Org Chem. 2018;14:1537-1545. doi:10.3762/bjoc.14.130

Meyer T, Liu W, Feldt M, Wuttke A, Mata R, Ackerman L. Manganese(I)-catalyzed dispersion-enabled C-H/C-C activation. Chem Eur. 2017;23(23):5443-5447. doi:10.1002/chem.201701191

How to Cite
Setiyowati, P. A. I., Mahbubillah, M. A., Aini, N. S., & Rachmawati, Y. (2024). In silico research of anti-CHIKF phytoconstituent-based from Physalis peruviana leaves via molecular docking and dynamics analyses. Genbinesia Journal of Biology, 3(1), 15-22.