Phytofluene from Physalis peruviana as promising anti-TB via InhA of Mycobacterium tuberculosis target: an in silico research
Abstract
Tuberculosis (TB) is an infectious disease after severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) in developed countries including Indonesia. Drug resistance becomes major issue worldwide and needs prospective therapeutics development. Plant with medicinal properties including Physalis peruviana is one the promising object to be new anti-TB drug candidate. This study aimed to analyze the inhibitory activity of anti-TB agents from aerial parts of P. peruviana. Ligand and protein samples were obtained from PubChem and RCSB PDB, respectively. The bioactive compounds were evaluated their antibacterial prediction and drug-likeness properties throughout PASS Online and SwissADME webservers. Selected ligands then docked via PyRX and measured the output by binding affinity. Visualization of the best outputs was carried out using BIOVIA Discovery Studio. The result showed that phytofluene had the lowest binding affinity topping the isoniazid as control with -7.2 and -5.1 kcal/mol after targeting enoyl-[acyl-carrier-protein] reductase (InhA) protein of Mycobacterium tuberculosis. This concluded that phytofluene functioned as predictive anti-TB therapeutic candidate. Further in vitro and in vivo studies are needed to validate this outcome.
Downloads
References
2. World Health Organization. Tuberculosis. World Health Organization. Published 2023. Accessed March 15, 2024. https://www.who.int/news-room/fact-sheets/detail/tuberculosis/
3. World Health Organization. Tuberkulosis. World Health Organization. Published 2022. Accessed March 15, 2024. https://www.who.int/indonesia/news/campaign/tb-day-2022/fact-sheets
4. O’Connor C, Brady M. Isoniazid. StatePearls [Internet]. Treasure Island (FL): StatPearls Publishing. Published 2022. Accessed March 15, 2024. https://www.ncbi.nlm.nih.gov/books/NBK557617/
5. Yamika W, Aini N, Waluyo B. Physalis peruviana L. growth, yield and phytochemical content: a review. Agric Rev. 2019;40(4):32432-32438. doi:10.18805/ag.R-130
6. Silalahi M, Nisyawati. The ethnobotanical study of edible and medicinal plants in the home garden of Batak Karo sub-ethnic in North Sumatra, Indonesia. Biodiversitas. 2018;19(1):229-238. doi:10.13057/biodiv/d190131
7. Yu Y, Chen X, Zheng Q. Metabolomics profiling of carotenoid constituents in Physais peruviana during different growth stages by LC-MS/MS technology. J Food Sci. 2019;64(12):3608-3612. doi:10.1111/1750-3841.14916
8. Kasali F, Tusiimire J, Kadima J, Tolo C, Weisheit A, Agaba A. Ethnotherapeutic uses and phytochemical composition of Physalis peruviana L.: an overview. Sci World J. 2021;2021:5212348. doi:10.1155/2021/5212348
9. Songsiriritthigul C, Hanwarinroj C, Pakamwong B, et al. Inhibition of Mycobacterium tuberculosis InhA by 3-nitropropanoic acid. Proteins. 2022;90(3):898-904. doi:10.1002/prot.26268
10. Tamam M, Aini N, Murtadlo A, Turista D, Naw S, Ullah M. Antiviral and anticancer activity from Curcuma longa L. and Tamarindus indica bioactive compounds through in silico analysis. SAINSTEK. 2023;2(1):12-17. doi:10.24036/sainstek/vol2-iss01/21
11. Turista D, Aini N, Murtadlo A, Tamam M, Naw S, Ullah M. Virtual screening of a,tentative antiretroviral through integrase inhibitor from Curcuma longa L. and Tamarindus indica compounds against HIV-1 infection. SAINSTEK. 2023;2(1):24-29. doi:10.24036/sainstek/vol2-iss01/20
12. Nafisah W, Fatchiyah, Widyananda M, et al. Potential of bioactive compound of Cyperus rotundus L. rhizome extract as inhibitor if PD-L1/PD-1 interaction: an in silico study. Agric Nat Resour. 2022;56(2022):751-760. doi:10.34044/j.anres.2022.56.4.09
13. Widyananda M, Wicaksono S, Rahmawati K, et al. A potential anticancer mechanism of finger root (Boesenbergia rotunda) extracts against a breast cancer cell line. Scientifica (Cairo). 2022;2022:9130252. doi:10.1155/2022/9130252
14. Wang X, Perryman A, Li S-G, et al. Intrabacterial metabolism obscures the successful prediction of an InhA inhibitor of Mycobacterium tuberculosis. ACS Infect Dis. 2019;5(12):2148-2163. doi:10.1021/acsinfecdis.9b00295
15. Etzbach L, Pfeiffer A, Weber F, Schieber A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MS. Food Chem. 2018;245:508-517. doi:10.1016/j.foodchem.2017.10.120
16. Maléndez-Martínez A, Stinco C, Mapelli-Brahm P. Skin carotenoids in public health and nutricosmetics: the emerging roles and applications of the UV radiation-absorbing colourless carotenoids phytoene and phytofluene. Nutrients. 2021;11(5):1093. doi:10.3390/nu11051093
17. Tanambell H, Quek S, Bishop K. Screening of in vitro health benefits of tangerine tomatoes. Antioxidants. 2019;8(7):230. doi:10.3390/antiox8070230
18. Mapelli-Brahm P, Maléndez-Martínez A. The colourless carotenoids phytoene and phytofluene: sources, consumption, bioavailability and health effects. Curr Opin Food Sci. 2021;41:201-209. doi:10.1016/j.cofs.2021.04.013
19. Li H, Chen A, Zhao L, et al. Effect of tomato consumption on fasting blood glucose and lipid profiles: a systematic review and meta-analysis of randomized controlled trials. Phyotherapy Res. 2020;34(8):1956-1965. doi:10.1002/ptr.6660
20. Mazidi M, Ferns G, Banach M. A high consumption of tomato and lycopene is associated with a lower risk of ancer mortality: results from a multi-ethnic cohort. Public Heal Nutr. 2020;23(9):1569-1575. doi:10.1017/S1368980019003227
21. Groten K, Marini A, Grether-Beck S, et al. Tomato phytonutrients balance UV response: results from a double-blind, randomized, placebo-controlled study. Skin Pharmacol Physiol. 2019;32(2):101-108. doi:10.1159/000497104
22. Rosenthal R, Vögeli B, Wagner T, Shima S, Erb T. A conserved threonine prevents self-intoxication of enoyl-thioester reductases. Nat Chem Biol. 2017;13(7):745-749. doi:10.1038/nchembio.2375
23. Vögeli B, Rosenthal R, Stoffel G, et al. InhA, the enoyl-thioester reductase from Mycobacterium tuberculosis forms a covalent adduct during catalysis. J Biol Chem. 2018;293(44):17200-17207. doi:10.1074/jbc.RA118.005405
24. Chia L, Kumar P, Maki M, Ravichandran G, Thilgar S. A review: the antiviral activity of cyclic peptides. Int J Pept Res Ther. 2022;29(1):7. doi:10.1007/s10989-022-10478-y
Copyright (c) 2024 Muhammad Evy Prastiyanto, Nur Sofiatul Aini, Yuanita Rachmawati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.