Virtual screening of phytochemical compounds from Physalis peruviana as perspective anti-schistosomiasis
Abstract
Schistosomiasis is a neglected tropical disease (NTD) causing by a Schistosoma japonicum parasite via Oncomelania hupensis snails. Even if the the number of cases decreases significantly, there is still drawbacks of conventional medication. Physalis peruviana is promising plant that rich phytochemicals as prospective drug candidiate of schistosomiasis. This study aimed to virtually screen the inhibitory activity of anti-schistososmiasis agents derived from P. peruviana body portion. Compound data were mined from PubChem and assessed their drug properties and target prediction using SwissADME and PASSOnline. Selected phytochemical compounds were screen the pharmacokinetics and toxicity by admetsar webserver. 1,2-benzenedicarboxylic acid and docosane was final filtered compounds as promising anti-schistosomiasis target. Daily dose arrangement should be confirmed through in vitro and in vivo because of the hepatoxicity characteristics of the compounds. Protein kinases of helminth projected to be next protein target of alternative therapeutics for vital roles in organism. To be concluded, 1,2-benzenedicarboxylic acid and docosane is functioned as anti-schistosomiasis candidates with further validation in different analyses.
Downloads
References
2. Lo N, Bezzera F, Colley D, et al. Review of 2022 WHO guidelines on the control and elimination of schistosomiasis. Infect Dis. 2022;22(1):E327-E335. doi:10.1016/S1473-3099(22)00221-3
3. World Health Organization. Schistosomiasis. World Health Organization. Published 2023. Accessed March 16, 2024. https://www.who.int/news-room/fact-sheets/detail/schistosomiasis
4. Satrija F, Ridwan Y, Jastal, Samarang, Rauf A. Current status of schistosomiasis in Indonesia. Acta Trop. 2015;141(B):349-353. doi:10.1016/j.actatropica.2013.06.014
5. World Health Organization. he last miles in indonesia’s schistosomiasis elimination programme. World Health Organization. Published 2022. Accessed March 16, 2024. https://www.who.int/indonesia/new/detail/26-02-2022/the-last-miles-in-indonesia-s-schistosomiasis-elimination-programme
6. Gouveia M, Brindley P, Gärtner F, Costa J da, Vale N. Drug repurposing for schistosomiasis: combinations of drugs or biomolecules. Pharm. 2018;11(1):15. doi:10.3390/ph11010015
7. Olliaro P, Delgado-Romero P, Keiser J. The little we know about the pharmacokinetics and pharmacodynamics of praziquantel (racemate and R-enatiomer). J Antimicrob Chemother. 2014;69(4):863-870. doi:10.1093/jac/dkt491
8. A Nalugwa, Nuwaha F, Tukahebwa E, Olsen A. A single versus double dose praziquantel comparison on efficacy and Schistosoma mansoni re-infection in pre-scholl-age children in Uganda: a randomized controlled trial. PLoS Negl Trop Dis. 2015;9(5):e0003796. doi:10.1371/journal.pntd.0003796
9. Wan K, Wang P, Zhang L. In vivo and in vitro activity of oil extract of garlic (Allium sativum Linnaeus) against Schistosoma japonicum cercariae. Rev Soc Bras Med Trop. 2017;50(1):126-129. doi:10.1590/0037-8682-0301-2016
10. Sheir S, Maghraby A, Mohamed A, Osman G, Al-Qormuti S. Immunomodulatory and ameliorative role of Nigella sativa oil on Schistosoma mansoni infected mice. Can J Pure Appl Sci. 2015;9(2):3345-3355.
11. Kasali F, Tusiimire J, Kadima J, Tolo C, Weisheit A, Agaba A. Ethnotherapeutic uses and phytochemical composition of Physalis peruviana L.: an overview. Sci World J. 2021;2021:5212348. doi:10.1155/2021/5212348
12. Zhang W-N, Tong W-Y. Chemical constituents and biological activities of plants from the Genus Physalis. Chem Biodivers. 2016;13(1):48-65. doi:10.1002/cbdv.201400435
13. Silalahi M, Nisyawati. The ethnobotanical study of edible and medicinal plants in the home garden of Batak Karo sub-ethnic in North Sumatra, Indonesia. Biodiversitas. 2018;19(1):229-238. doi:10.13057/biodiv/d190131
14. Aini N, MurtadlO A, Tamam M, Turista D, Naw S, Ullah M. Triple inhibitor mechanism of antiretroviral from Sambucus nigra phytochemical through screening docking. SAINSTEK. 2023;2(1):18-23. doi:10.24036/sainstek/vol2-iss01/18
15. Widyananda M, Wicaksono S, Rahmawati K, et al. A potential anticancer mechanism of finger root (Boesenbergia rotunda) extracts against a breast cancer cell line. Scientifica (Cairo). 2022;2022:9130252. doi:10.1155/2022/9130252
16. Nafisah W, Fatchiyah, Widyananda M, et al. Potential of bioactive compound of Cyperus rotundus L. rhizome extract as inhibitor if PD-L1/PD-1 interaction: an in silico study. Agric Nat Resour. 2022;56(2022):751-760. doi:10.34044/j.anres.2022.56.4.09
17. Umar A, Ratnadewi D, Rafi M, Sulistyaningsih Y, Hamim, Kusuma W. Drug candidates and potential targets of Curculigo spp. compounds for treating diabetes mellitus based on network pharmacology, molecular docking and molecular dynamics simulation. J Biomol Struct Dyn. doi:10.1080/07391102.2022.2135597
18. Huang L, Zhu X, Zhou S, et al. Phthalic acid esters: natural sources and biological activities. Toxins (Basel). 2021;13(7):495. doi:10.3390/toxins13070495
19. Ertürk Ö, Ayvaz MÇ, Can Z, Karaman Ü, Korkmaz K. Antioxidant, antimicrobial activities and phenolic and chemical contents of Physalis peruviana L. from Trabazon, Turkey. Indian J Pharm Eductaion Res. 2017;51(3):S213-6. doi:10.5530/ijper.51.3s.15
20. Shao H, Huang X, Wei X, Zhang C. Phytotoxic effects and a phytotoxin from the invasive plant Xanthium italicum Moretti. Molecules. 2012;17(4):4037-4046. doi:10.3390/molecules17044037
21. Deng J, Zhang Y, Hu J, et al. Autotoxicity of phthalate esters in tobacco root exudates: effects on seed germination and seedling growth. Pedosphere. 2017;27(6):1073-1082. doi:10.1016/S1002-0160(16=7)60374-6
22. Janu N, Jaynthy C. Antimicrobial activity of diethyl phthalate: an in silico approach. Asian J Pharm Clin Res. 2019;7(4):141-142.
23. Gayatri K, Soundhari C, Pavithra B. Biofilm inhibitory effect of Chlorella extracts on Pseudomonas aeruginosa. Int J Pharm Sci Res. 2019;10(4):1966-1971. doi:10.13040/IJPSR.0975-8231.10(4).1966-71
24. Roy R. Bioactive natural derivatives of phthalate ester. Crit Rev Biotechnol. 2020;40(7):913-929. doi:10.1080/07388551.2020.1789838
25. Salem M, Zayed M, Ali H, El-Kareem MA. Chemical composition, antioxidant and antibacterial activities of extracts from Schinus molle wood branch growing in Egypt. J Wood Sci. 2016;62:548-561. doi:10.1007/s10086-016-1583-2
26. Potdar D, Hirwani R, Dhulap S. Phyto-chemical and pharmacological applications of Berberis aristata. Fitoterapia. 2012;83(5):817-830. doi:10.1016/j.fitote.2012.04.012
27. Erhirhie E, Ihekwereme C, Ilodigwe E. Advances in acute toxicity testing: strengths, weakness and regulatory acceptance. Interdiscip Toxicol. 2018;11(1):5-12. doi:10.2478/intox-2018-0001
28. Nelwan M. Schistomosiasi: life cycle, diagnosis, and control. Curr Ther Res Clin Exp. 2019;91:5-9. doi:10.1016/j.curtheres.2019.06.001
29. Yang F, Long E, Wen J, Cao L, Zhu C, Hu H. Linalood, derived from Cinnamomum camphora (L.) Presl leaf extracts, possesses molluscicidal activity against Oncomelania hupensis and inhibits of Schistosoma japonicum. Parasit Vectors. 2014;7:407. doi:10.1186/1756-3305-7-407
30. You H, Harvie M, Du X, Rivera V, Zhang P, McManus P. Protective immune response generated in a murine model following immunization with recombinant Schistosoma japonicum insulin receptor. Int J Mol Sci. 2018;19(10):3088. doi:10.3390/ijms19103088
31. Wu K, Zhai X, Huang S, Jiang L, Yu Z, Huang J. Protein kinases: potential drug targets against Schistosoma japonicum. Front Cell Infect Microbiol. 2021;11:691757. doi:10.3389/fcimb.2021.691757
Copyright (c) 2022 M. Ainul Mahbubillah, Nur Sofiatul Aini, Muhammad Evy Prastiyanto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.